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Abstract

LetG be a finite group and let T be a non-empty subset ofG. For any positive integer k, let T k =
{t1 . . . tk | t1, . . . , tk ∈ T}. The set T is called exhaustive if Tn = G for some positive integer
n where the smallest positive integer n, if it exists, such that Tn = G is called the exhaustion
number of T and is denoted by e(T ). If T k ̸= G for any positive integer k, then T is a non-
exhaustive subset and we write e(T ) = ∞. In this paper, we investigate the exhaustion numbers
of subsets of the generalized quaternion group Q2n = ⟨x, y | x2n−1

= 1, x2n−2

= y2, yx =

x2n−1−1y⟩ where n ≥ 3. We show that Q2n has no exhaustive subsets of size 2 and that the
smallest positive integer k such that any subset T ⊆ Q2n of size greater than or equal to k
is exhaustive is 2n−1 + 1. We also show that for any integer k ∈ {3, . . . , 2n}, there exists an
exhaustive subset T of Q2n such that |T | = k.
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1 Introduction

Factoring a finite abelian group into subsets was first initiated by Hajós [8] to solve a famous
geometry problem byH.Minkowski in 1941. In the past few decades, study of group factorization
has received numerous research attentions (see [9, 12]) and they found its applications in various
field such as geometry of tiling, code theory, cryptography, graph theory and etc (see [5, 6]). The
current research has renew focused on factoring nonabelian groups into subsets (see [1, 11]). The
study by Sahai and Ansari [13] adds to the growing body of research in this area and provides
insights into the properties of non-abelian groups and how they can be factored.

The generalized quaternion groups are nonabelian groups, which have been widely used in
various applications. Every abelian subgroup of generalized quaternion groups is cyclic. The al-
gebraic structure of the generalized quaternion groups has attracted the interest of researchers
from various background in representation theory [10] and information theory [14]. Linear com-
plementary dual (LCD) codes which are a class of linear codes, have been extensively studied
by many researchers recently. In [7], the generalized quaternion algebras is focused to construct
linear complementary dual (LCD) codes and self-orthogonal codes.

Let G be a finite group and let T be a non-empty subset of G. For any positive integer k, let
T k = {t1 . . . tk | t1, . . . , tk ∈ T}. The set T is called exhaustive if Tn = G for some positive integer
n. The smallest positive integer n, if it exists, such that Tn = G is called the exhaustion number of
T and is denoted by e(T ). If T k ̸= G for any positive integer k, then T is a non-exhaustive subset
and we write e(T ) = ∞.

Early work on exhaustion numbers have focused mainly on subsets of finite abelian groups. In
[3], the authors studied someproperties of exhaustive andnon-exhaustive subsets of finite groups.
A characterization of non-exhaustive subsets of finite groups is found and it can be used to obtain
an upper bound for the size of a non-exhaustive subset. In [4], Chin completely determined the
exhaustion numbers of subsets of abelian groups that are in arithmetic progression as well as
the exhaustion numbers of various other subsets of abelian groups. Recent work on exhaustion
numbers have extended to subsets of finite non-abelian groups, in particular, the dihedral groups.

The exhaustive subsets of size 2 are fundamental to the constructions of the exhaustive subsets
of sizem for positive integerm > 2. In [2], the authors studied the exhaustion numbers of all the
n(2n − 1) subsets of the size 2 of dihedral group D2n = ⟨x, y|xn = y2 = 1, xy = yxn−1⟩ of order
2n for n ≥ 3. The existence of exhaustion 2-subsets for all the subsetsB = {h1, h2} in the dihedral
group D2p is proved using the notion of group ring, where p is an odd prime number, h1 ∈ ⟨x⟩
and h2 ∈ ⟨x⟩y in [15].

Let G be a finite group. For any group element g ∈ G and non-empty subset S of the group
G, the notation ⟨g⟩ denotes the cyclic group generated by g whereas gS = {gs | s ∈ S}. Similarly,
Sg = {sg | s ∈ S}. In this paper, we study the products of k subsets of generalized quaternion
groups Q2n and investigate the exhaustion numbers of subsets of Q2n for n ≥ 3. Throughout this
paper, let Q2n = ⟨x, y | x2n−1

= 1, x2n−2

= y2, yx = x2n−1−1y⟩, the generalized quaternion group
of order 2n where n ≥ 3. Thus, Q2n = ⟨x⟩ ∪ ⟨x⟩y. We first identify the largest non-exhaustive
subsets of Q2n in Section 2 and show that Q2n does not have any exhaustive subsets of size 2.
This is followed in Section 3 with a study of the exhaustion numbers of various subsets of Q2n ,
n ≥ 3. In particular, we show that smallest positive integer k such that any subset T ⊆ Q2n of size
greater than or equal to k is exhaustive is 2n−1 + 1 for n ≥ 3. We also show that for any integer
k ∈ {3, . . . , 2n}, there exists an exhaustive subset T of Q2n such that |T | = k.
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2 Non-Exhaustive Subsets of Q2n , n ≥ 3

In this section, we identify some non-exhaustive subsets of the generalized quaternion groups
Q2n . It is clear that any proper subgroup H of a finite group G forms a non-exhaustive subset of
the group since Hn = H ⊊ G for any positive integer n. Thus, all subgroups of Q2n , n ≥ 3 are
non-exhaustive.

We begin by stating two results that hold for all finite groups – the first result tells us that
subsets of exhaustive subsets are exhaustive whereas the second result tells us that subsets of
non-exhaustive subsets are non-exhaustive.

Proposition 2.1. LetG be a finite group and let T, S be non-empty subsets ofG. If T ⊆ S and e(T ) exists,
then e(S) ≤ e(T ).

Proof. Suppose that e(T ) exists and e(T ) = k for some positive integer k. So T k = G, and it follows
that Sk = G since T ⊆ S. Hence, it is clear that e(S) ≤ e(T ).

Corollary 2.1. Let G be a finite group and let T, S be non-empty subsets of G. If T ⊆ S and e(S) = ∞,
then e(T ) = ∞.

Proof. Suppose that e(T ) = k for some positive integer k. Since T ⊆ S, it follows by Proposition
2.1 that e(S) ≤ e(T )which contradicts the fact that e(S) = ∞.

We next list the largest non-exhaustive subsets of Q2n , n ≥ 3.

Proposition 2.2. Let T1, . . . , T5 be subsets of Q2n = ⟨x, y | x2n−1

= 1, x2n−2

= y2, yx = x2n−1−1y⟩
(n ≥ 3) as follows:

(i) T1 = {y, xy, x2y, . . . , x2n−1−1y};

(ii) T2 = {1, x2, x4, . . . , x2k, . . . , x2n−1−2, y, x2y, x4y, . . . , x2ky, . . . , x2n−1−2y};

(iii) T3 = {1, x2, x4, . . . , x2k, . . . , x2n−1−2, xy, x3y, . . . , x2k+1y, . . . , x2n−1−1y};

(iv) T4 = {x, x3, . . . , x2k+1, . . . , x2n−1−1, xy, x3y, . . . , x2k+1y, . . . , x2n−1−1y};

(v) T5 = {x, x3, . . . , x2k+1, . . . , x2n−1−1, y, x2y, x4y, . . . , x2ky, . . . , x2n−1−2y}.

Then |Ti| = 2n−1 and e(Ti) = ∞ for i = 1, . . . , 5.

Proof. (i) Since x2n−2

= y2 and yx = x2n−1−1, we see that T 2
1 = {1, x, x2, . . . , x2n−1−1}.

Note that T 2
1 is a subgroup ofQ2n and hence, T 2k

1 ̸= Q2n for any integer kwhich implies that
e(T1) = ∞.

(ii)− (iii) Since x2i+1 /∈ T k
2 , T

k
3 for all i, k ∈ N, it follows that e(T2) = e(T3) = ∞.

(iv) − (v) We observe that T 2k
4 , T 2k

5 ⊉ {x, x3, . . . , x2n−1−1} ∪ {xy, x3y, . . . , x2n−1−1y} and
T 2k+1
4 , T 2k+1

5 ⊉ {1, x2, . . . , x2n−1−2} ∪ {y, x2y, . . . , x2n−1−2y} for k ∈ N. Hence, e(T4) =
e(T5) = ∞.
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We remark that there is no non-exhaustive subsets of Q2n of size greater than 2n−1.

Corollary 2.2. There exists T ⊆ Q2n (n ≥ 3) where |T | ∈ {1, . . . , 2n−1} such that e(T ) = ∞.

Proof. The result is obvious since any subset S ⊆ Ti from Proposition 2.2 is non-exhaustive for all
i = 1, 2, . . . , 5.

The following theorem tells us that all subsets of size 2 in Q2n (n ≥ 3) are non-exhaustive.

Theorem 2.1. Let T ⊆ Q2n , n ≥ 3. If |T | = 2, then e(T ) = ∞.

Proof. Let a, b ∈ {0, 1, . . . , 2n−1 − 1}, a ̸= b. Clearly, a subset of size 2 in Q2n may take one of the
following forms: S1 = {xa, xb}, S2 = {xay, xby}, or S3 = {xa, xby}. Let T1, . . . , T5 be the subsets
of Q2n as described in Proposition 2.2.

Note that S1 = {xa, xb} ⊂ ⟨x⟩. Since ⟨x⟩ is non-exhaustive, it follows by Corollary 2.1 that
S1 is also non-exhaustive. Clearly, S2 ⊂ T1 and S3 is a subset of one of the sets T2, T3, T4 or T5.
Therefore, by Corollary 2.1, e(Si) = ∞ for i = 2, 3. Hence, we conclude that e(S) = ∞ for any
subset S ⊂ Q2n of size 2.

Remark 2.1. By Theorem 2.1 we have that the minimal generating set {x, y} ofQ2n is not exhaus-
tive. Thus, a generating set is not necessarily exhaustive although the converse is always true.

3 Exhaustive Subsets of Q2n , n ≥ 3

LetG be a finite group and let T ⊆ G. If |T | = 1, then |Tm| = 1 for every positive integerm and
hence, e(T ) = ∞. On the other hand, if |T | = 2n, then T = Q2n and hence, e(T ) = 1. Therefore,
the extreme cases where |T | = 1 and |T | = 2n are trivial.

We have seen in the previous section that Q2n does not have any exhaustive subsets of size 2.
In this section, we investigate the exhaustion numbers of subsets T of Q2n for n ≥ 3, where |T | ∈
{3, . . . , 2n−1}. By using the group relations inQ2n , we note that ⟨x⟩yxi = ⟨x⟩y and ⟨x⟩yxiy = ⟨x⟩
for i ∈ {0, 1, . . . , 2n−1 − 1}.

By Proposition 2.2 we know that there are non-exhaustive subsets of Q2n of size 2n−1. The
following proposition tells us that any subset T of Q2n such that |T | ≥ 2n−1 + 1 is exhaustive.

Proposition 3.1. Let T ⊆ Q2n , n ≥ 3. If 2n−1 + 1 ≤ |T | ≤ 2n − 1, then the exhaustion number,
e(T ) = 2.

Proof. We begin by assuming that T ⊇ ⟨x⟩ = {1, x, x2, . . . , x2n−1−1}. Since |⟨x⟩| = 2n−1 and
|T | ≥ 2n−1+1, so there exists xiy ∈ T for some i ∈ {0, 1, . . . , 2n−1−1}. Clearly, ⟨x⟩y = ⟨x⟩xiy ⊆ T 2

and ⟨x⟩ = ⟨x⟩⟨x⟩ ⊆ T 2. Hence, e(T ) = 2.

Next, we assume T ⊇ ⟨x⟩y = {y, xy, . . . , x2n−1−1y}. Since |⟨x⟩y| = 2n−1 and |T | ≥ 2n−1 + 1,
so there exists an xj ∈ T for some j ∈ {0, 1, . . . , 2n−1 − 1}. Thus, we have ⟨x⟩y = ⟨x⟩yxj , ⟨x⟩ =
⟨x⟩y⟨x⟩y ⊆ T 2 and hence, e(T ) = 2.

194



H. V. Chen and C. S. Sin Malaysian J. Math. Sci. 17(2): 191–200(2023) 191 - 200

Now suppose that T ⊉ ⟨x⟩ and T ⊉ ⟨x⟩y. Let E = T ∩ {1, x, . . . , x2n−1−1} and F = T ∩
{y, xy, . . . , x2n−1−1y}. Clearly, E ̸= ∅, F ̸= ∅, E ∩ F = ∅ and T = E ∪ F . We first show that
xiy ∈ T 2 for i ∈ {0, 1, . . . , 2n−1 − 1}. Suppose that |E| = 2n−1 − j, where j ∈ {1, . . . , 2n−1 − 1}.
Thus, |F | = |T | − |E| ≥ (2n−1 + 1)− (2n−1 − j) = j + 1. Let F ′ = {xα1y, . . . , xαj+1y} ⊆ F . Then
E(xαiy) ̸= E(xαky) and |E(xαiy)| = |E| for i ̸= k, i, k ∈ {1, . . . , j + 1}. Hence, EF ′ = {xk(xαly) |
xk ∈ E, xαly ∈ F ′} has at least |E|+ j = 2n−1 elements. Since there are only 2n−1 elements of the
form xiy in Q2n , it follows that xiy ∈ T 2 for all i ∈ {0, 1, . . . , 2n−1 − 1}.

Next, we show that xi ∈ T 2 for all i ∈ {0, 1, . . . , 2n−1 − 1}. We begin by assuming that |E| >
2n−2. Suppose that xj /∈ T 2 for some j ∈ {0, 1, . . . , 2n−1 − 1}. Note that xj = 1(xj) = (x)(xj−1) =

(x2)(xj−2) = · · · = (x2n−1−1)(xj−(2n−1−1)). Since the powers of x commute with one another, so
the number of ways to represent xj as a product of two elements of {1, x, . . . , x2n−1−1} is 2n−2

when j is odd and 2n−2 + 1 when j is even. Then since xj /∈ T 2, we have |E| ≤ 2n−2, which
is a contradiction. Thus, xj ∈ T 2 for all j ∈ {0, 1, . . . , 2n−1 − 1}. This leaves us with the case
|E| ≤ 2n−2, that is, |F | ≥ 2n−1 + 1− 2n−2 = 2n−2 + 1.

Note that xi = y(x2n−2−iy) = (xy)(x2n−2+1−i) = · · · = (x2n−1−1y)(x2n−2+(2n−1−1)−iy) for any
i ∈ {0, 1, . . . , 2n−1 − 1}. Moreover, (xiy)(xjy) = (xjy)(xiy) if and only if i − j ≡ 0 (mod 2n−2).
Since |F | ≥ 2n−2 + 1, we see that there is at least one pair of distinct elements of F , say (xry, xsy)
such that r− s ≡ 0 (mod 2n−2). That is, the elements xry and xsy commute with one another but
do not commute with any other element in F . Then by considering the products (xry)(xky) for all
xky ∈ F and noting that |F | ≥ 2n−2 + 1, we see that xj ∈ T 2 for all j ∈ {0, 1, . . . , 2n−1 − 1}. Thus,
we conclude that e(T ) = 2.

Theorem 3.1. Let T ⊆ Q2n , n ≥ 3 with |T | = s. The smallest positive integer s such that any subset T
is exhaustive is 2n−1 + 1.

Proof. From Proposition 3.1, we see that if 2n−1 + 1 ≤ |T | ≤ 2n − 1, then e(T ) = 2. The result is
obvious since there are non-exhaustive subsets of Q2n of size 2n−1 from Proposition 2.2.

Remark 3.1. Note that the exhaustion numbers of subsets of the same size in a group are not neces-
sarily the same. For example, take T1 = {y, xy, x2y, . . . , x2n−1−1y}, T2 = {1, x, . . . , x2n−1−2, y} and
T3 = {1, x, . . . , x2n−2−1, x2n−2+1, x2n−2+2, . . . , x2n−1−1, y} ⊆ Q2n . Then |T1| = |T2| = |T3| = 2n−1

but e(T1) = ∞ (by Proposition 2.2) whereas e(T2) = 2 and e(T3) = 3.

Other than the subsets with exhaustion number 2 given in Proposition 3.1, there also exist
subsets of smaller size with exhaustion number 2 as shown in the following proposition.

Proposition 3.2. Let n ≥ 3 and m ∈ {2n−2, 2n−2 + 1, . . . , 2n−1 − 2}. If T = {1, x, x2, . . . , xm, y}
⊆ Q2n , then e(T ) = 2.

Proof. Let T = T1 ∪ {y}, where T1 = {1, x, . . . , xm}. Note that 1, x, . . . , x2m ∈ T 2
1 and T 2

1 = ⟨x⟩ as
m ≥ 2n−2. We see that T1y = {y, xy, . . . , xmy} and yT1 = {y, x2n−1−1y, x2n−1−2y, . . . , x2n−1−my}.

Sincem ≥ 2n−2 > 2n−2 − 1
2 = 2n−1−1

2 , so 2n−1 − 1 < 2m; that is, 2n−1 −m < m+1 and hence,
T1y ∪ yT1 = ⟨x⟩y. Thus, e(T ) = 2.

We next show the existence of exhaustive subsets T ⊆ Q2n with e(T ) = 3.
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Proposition 3.3. Let T = {1, x, . . . , xm, y} ⊆ Q2n , n ≥ 3, wherem =
⌈
2n−1

3

⌉
. Then e(T ) = 3.

Proof. Let T1 = {1, x, x2, . . . , xm} ⊆ T . Since 2m = 2
⌈
2n−1

3

⌉
< 2

⌈
2n−1

2

⌉
= 2n−1, so

T 2
1 = {1, x, x2, . . . , x2m} ⊈ ⟨x⟩.

We compute T 2
1 y = {y, xy, . . . , x2my} and yT 2

1 = {x2n−1−2my, x2n−1−2m+1y, . . . , x2n−1−1y, y}.
Since m =

⌈
2n−1

3

⌉
> 2n−3, so 4m > 2n−1 and hence, 2m > 2n−1 − 2m. This implies that

T 2
1 y ∪ yT 2

1 = {y, xy, . . . , x2n−1−1y}. Therefore, ⟨x⟩y ⊆ T 2.

Note that 3m = 3
⌈
2n−1

3

⌉
> 3

(
2n−1

3

)
= 2n−1, so ⟨x⟩ = T 3

1 ⊆ T 3 and ⟨x⟩y ⊆ T 2 ⊂ T 3. Hence,
T 3 = Q2n which implies that e(T ) = 3.

By Proposition 2.1, we have the following:

Corollary 3.1. Let m ∈ {
⌈
2n−1

3

⌉
,
⌈
2n−1

3

⌉
+ 1, . . . , 2n−2 − 1} where n ≥ 3.

If T = {1, x, x2, . . . , xm, y} ⊆ Q2n , then e(T ) ≤ 3.

Proof. The result is obvious since the size of the subset T in this corollary is greater than or equal
to the size of the subset T stated in Proposition 3.3.

Now note that if S is a non-exhaustive subset of G, then the set S̄ = S ∪ {1} is exhaustive.
Indeed, since 1 ∈ S̄, we have that S̄k ⊂ S̄k+1 for all positive integer k. It follows that |S̄| < |S̄2| <
· · · < |S̄k| < |S̄k+1| < · · · < |G|; hence |S̄n| = |G| for some positive integer n which implies that S̄
is exhaustive. Thus, T = {1, x, y} is exhaustive and to compute its exhaustion number, we make
use of the following lemma which tells us which elements are in T k.

Lemma 3.1. Let T = {1, x, y} ⊆ Q2n , n ≥ 3. Then

(i) {1, x, x2, . . . , xk} ⊆ T k ∀k ≥ 2.

(ii) {x2n−2

, x2n−2+1, . . . , x2n−2+k−2} ⊆ T k ∀k ≥ 3.

(iii) {y, xy, . . . , xk−1y} ⊆ T k ∀k ≥ 2.

(iv) {x2n−2−k+2, x2n−2−k+3, . . . , x2n−2−1} ⊆ T k ∀k ≥ 3.

(v) {x2n−2

y, x2n−2+1y, . . . , x2n−2+k−3y} ⊆ T k ∀k ≥ 3.

(vi) {x2n−1−k+4, x2n−1−k+5, . . . , x2n−1−1} ⊆ T k ∀k ≥ 5.

(vii) {x2n−2−k+3y, x2n−2−k+4y, . . . , x2n−2+k−2y} ⊆ T k ∀k ≥ 4.

(viii) {x2n−1−k+1y, x2n−1−k+2y, . . . , x2n−1−1y} ⊆ T k ∀k ≥ 3.

Proof. (i) If c ∈ T i, then c ∈ T j for all j ≥ i since 1 ∈ T . Hence, for any positive integer i ≤ k,
we see that xi ∈ T i ⊆ T k.
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(ii) Note that x2n−2

= yy ∈ T 2 ⊆ T i for i ≥ 2 and {1, x, . . . , xk−2} ⊆ T k−2.
Hence, {x2n−2

, x2n−2+1, . . . , x2n−2+k−2} ⊆ T 2T k−2 = T k.

(iii) Since y ∈ T and {1, x, . . . , xk−1} ⊆ T k−1 (by (i)), we see that
{y, xy, . . . , xk−1y} = {1, x, . . . , xk−1}y ⊆ T k−1T = T k.

(iv) Since {x, x2, . . . , xk−2} ⊆ T k−2 and y ∈ T , it follows that
{xy, x2y, . . . , xk−2y} ⊆ T k−2T = T k−1.
Then {x2n−2−1, x2n−2−2, . . . , x2n−2−k+2} = y{xy, . . . , xk−2y} ⊆ TT k−1 = T k.

(v) By (ii), we have that {x2n−2

, x2n−2+1, . . . , x2n−2+k−3} ⊆ T k−1. Thus,
{x2n−2

y, x2n−2+1y, . . . , x2n−2+k−3y} = {x2n−2

, x2n−2+1, . . . , x2n−2+k−3}y ⊆ T k−1T = T k.

(vi) By selecting {x2n−2+1y, x2n−2+2y, . . . , x2n−2+k−4y} ⊆ T k−1 from (v), we have
{x2n−1−1, x2n−1−2, . . . , x2n−1−k+4} = y{x2n−2+1y, x2n−2+2y, . . . , x2n−2+k−4y} ⊆ TT k−1 =
T k.

(vii) The result is clear from (iv) and the fact that y ∈ T .

(viii) This is obvious since {x, x2, . . . , xk−1} ⊆ T k−1 (by (i)) and the relation yx = x2n−1−1y.

We now determine the exhaustion number of S = {1, x, y} ⊆ Q2n , n ≥ 3.

Proposition 3.4. Let S = {1, x, y} ⊆ Q2n , n ≥ 3. Then

e(S) =

{
3, if n = 3,
2n−3 + 3, if n ≥ 4.

Proof. It is straightforward to check that e(S) = 3 when n = 3 and e(S) = 5 when n = 4. Now
suppose that n ≥ 5.

By Lemma 3.1, parts (i), (iv), (ii) and (vi), we have that the sets {1, x, . . . , x2n−3+2},
{x2n−3

, x2n−3+1, . . . , x2n−2−1}, {x2n−2

, x2n−2+1, . . . , x2n−2+2n−3} and
{x2n−2+2n−3+2, x2n−2+2n−3+3, . . . , x2n−1−1}, respectively, are all contained in S2n−3+2. However,
x2n−2+2n−3+1 /∈ S2n−3+2.

By Lemma 3.1, parts (i), (iv), (ii) and (vi) again, we have that the following sets are all con-
tained in S2n−3+3: {1, x, . . . , x2n−3+3}, {x2n−3−1, x2n−3

, . . . , x2n−2−1},
{x2n−2

, x2n−2+1, . . . , x2n−2+2n−3+1}, {x2n−2+2n−3+1, x2n−2+2n−3+2, . . . , x2n−1−1}. Therefore,
⟨x⟩ ⊆ S2n−3+3 but ⟨x⟩ ⊈ S2n−3+2.

Next, by parts (iii), (vii) and (viii) in Lemma 3.1, we have that {y, xy, . . . , x2n−3+1y},
{x2n−3+1y, x2n−3+2y, . . . , x2n−2+2n−3

y} and {x2n−2+2n−3−1y, x2n−2+2n−3

y, . . . , x2n−1−1y} are all con-
tained in S2n−3+2. Hence, ⟨x⟩y ⊆ S2n−3+2.

By collecting the above results we have that S2n−3+2 ̸= Q2n but S2n−3+3 = Q2n . It follows that
e(S) = 2n−3 + 3 for n ≥ 4.

Corollary 3.2. For any integer k ∈ {3, . . . , 2n}, there exists an exhaustive subset T of Q2n , n ≥ 3, such
that |T | = k.
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Proof. By Propositions 2.1 and 3.4, we see that for any subset T ⊆ Q2n such that T ⊇ {1, x, y} = S,
we have e(T ) ≤ e(S) < ∞.

Another consequence of Proposition 3.4 is the following which gives upper and lower bounds
for the exhaustion numbers of certain subsets of Q2n , n ≥ 3.

Corollary 3.3. Let T = {1, x, . . . , xm, y} ⊆ Q2n for m ∈ {1, . . . , 2n−1 − 2} where n ≥ 4. Then
2 ≤ e(T ) ≤ 2n−3 + 3.

Proof. By Proposition 3.4, we see that e(T ) = 2n−3 + 3 when m = 1. Next, by Proposition 3.2, we
have e(T ) = 2whenm = 2n−1−2. Hence, by Proposition 2.1, we conclude that 2 ≤ e(T ) ≤ 2n−3+3
form ∈ {1, . . . , 2n−1 − 2}.

Remark 3.2. Not all i ∈ {2, . . . , 2n−3+3} as stated in Corollary 3.3 are realizable as the exhaustion
number of a subset of the form {1, x, . . . , xm, y} ⊆ Q2n as shown below for the group Q32.

Table 1: e(T )where T = {1, x, . . . , xm, y}with size |T | ∈ {3, 4, . . . , 2n−1}.

Q16 (n = 4) Q32 (n = 5)

m |T | e(T ) m |T | e(T )

1 3 5 1 3 7

2 4 4 2 4 5

3 5 3 3 5 5

4 6 2 4 6 4

5 7 2 5, 6, 7 7, 8, 9 3

6 8 2 8, 9, . . . , 14 10, 11, . . . , 16 2

The problem of finding the exhaustion numbers of subsets of finite non-abelian groups other
than the dihedral and generalized quaternion groups remains open.

4 Conclusions

The exhaustion numbers of subsets of finite abelian groups has attracted the attention of re-
searchers in the few past decades. This is due to its extensive applications of subsets of groups in
the fields of number theory, coding, cryptography and etc. The study of exhaustion numbers of
various subsets of abelian groups has been determined by Chin [4]. Factoring nonabelian groups
into subsets is the new research direction and some relatedwork has been completed, in particular,
on the dihedral groups.

In this paper, we focus on the exhaustion numbers of the nonabelian groups, generalized
quaternion groups Q2n for n ≥ 3. Q2n has a unique algebraic structure for various applications.
We identify the largest non-exhaustive subsets of Q2n of size 2n−1 and show that Q2n has no ex-
haustive subsets of size 2. In addition, the smallest positive integer k such that any subset T ⊆ Q2n

of size≥ k is exhaustive is 2n−1+1, with e(T ) = 2. The exhaustion number of S = {1, x, y} ⊆ Q2n

is studied for n ≥ 3, where size S is the smallest for a subset to be exhaustive. We also show that
for any integer k ∈ {3, . . . , 2n}, there exists an exhaustive subset T of Q2n such that |T | = k, and

198



H. V. Chen and C. S. Sin Malaysian J. Math. Sci. 17(2): 191–200(2023) 191 - 200

hence, there is no gaps in the size of an exhaustive subsets of Q2n . In summary, we determine the
exhaustive and non-exhaustive subsets of generalized quaternion groupsQ2n for n ≥ 3 and show
that the generalized quaternion groups can be factored into subsets.
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